skip to main content


Search for: All records

Creators/Authors contains: "Chen, Mingyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 28, 2024
  2. Phonons are important lattice vibrations that affect the thermal, electronic, and optical properties of materials. In this work, we studied infrared phonon resonance in a prototype van der Waals (vdW) material—hexagonal boron nitride (hBN)—with the thickness ranging from monolayers to bulk, especially on ultra-thin crystals with atomic layers smaller than 20. Our combined experimental and modeling results show a systematic increase in the intensity of in-plane phonon resonance at the increasing number of layers in hBN, with a sensitivity down to one atomic layer. While the thickness-dependence of the phonon resonance reveals the antenna nature of our nanoscope, the linear thickness-scaling of the phonon polariton wavelength indicates the preservation of electromagnetic hyperbolicity in ultra-thin hBN layers. Our conclusions should be generic for fundamental resonances in vdW materials and heterostructures where the number of constituent layers can be conveniently controlled. The thickness-dependent phonon resonance and phonon polaritons revealed in our work also suggest vdW engineering opportunities for desired thermal and nanophotonic functionalities. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Polaritons—confined light–matter waves—in van der Waals (vdW) materials are a research frontier in light–matter interactions with demonstrated advances in nanophotonics. Reflection, as a fundamental phenomenon involving waves, is particularly important for vdW polaritons, predominantly because it enables the investigation of polariton standing waves using the scanning probe technique. While previous works demonstrate a rigid phase ≈π/4 for the polariton reflection, herein is reported the altering of the polariton reflection phase by varying the geometry of polaritonic microstructures for the case study of hyperbolic surface polaritons (HSPs) in hexagonal boron nitride (hBN). Specifically, it is demonstrated that the polariton reflection phase can be systematically altered by varying the corner angle of the hBN microstructures, and that it experiences a π jump around a specific angle. This behavior, which is a consequence of the mathematical nature of the reflection coefficient, is therefore expected in other physical phenomena.

     
    more » « less
  5. Sample suspension is a valuable method to improve the mechanical, thermal, electronic, and optical properties of low-dimensional materials. In terms of confined light-matter waves—the polaritons, sample suspension can elongate the wavelength of polaritons with a positive phase velocity. Previous work demonstrates a wavelength elongation of ∼10% for hyperbolic phonon polaritons (HPPs) in uniaxial crystals of hexagonal boron nitride (hBN). In this work, we report the alteration of HPPs in biaxial α-phase molybdenum trioxide (α-MoO3) by sample suspension. Our combined infrared nano-imaging experiments and electromagnetic theory reveal a wavelength elongation > 60% and a propagation length increase > 140%, due to the simultaneous wavelength elongation and dissipation elimination in the suspended specimen. We have also examined HPPs in α-MoO3with a negative phase velocity. The sample suspension shortens the HPP wavelength and simultaneously reduces the dissipation due to the unique permittivity tensor. The HPPs with improved figures of merits in the suspended specimen may be developed for nano-polaritonic circuits, biochemical sensing, emission engineering, and energy transfer.

     
    more » « less